Color Sorting Technique - Image Processing

Rajesh Fithelis

Department of Software Engineering, UDOT Information and Communications Technologies, 726/1 Venky Complex, Second Floor, Cross Cut Road, Tatabad, Coimbatore, Tamil Nadu 641012. email: rajeshf@live.com

Abstract. This paper discusses about sorting objects based on color threshold used for machine vision or image processing; This algorithm is used to count all the defect pixels appear on the object. So by using this algorithm we can sort-out the defect colored objects from the system. The defect pixel color can be defined by users as threshold value, so according to the threshold value fixed the defect pixels will be counted. This algorithm is designed to works on the RGB images, so if any RGB image is given as input to this algorithm it will count the defect pixels and give the counted defect pixels as output. The algorithm was coded using MATLAB-7.0 programming environment.

Keywords: defect pixel, image processing, machine vision, color sorting, defect color counting

I. Introduction

In the food processing industry, the removal of poor quality goods and extraneous matter from their produce is a necessity not only due to buyer demands but also due to Health and Safety regulations. Manual sorting can be very expensive, and therefore the use of automatic food sorting systems has become paramount in order to increase productivity and to improve profitability. In particular this paper discusses about the rice grain sorting algorithm using the aid of image processing, which is designed to meet the specific needs of rice grain industries. The machine vision algorithm sorts rice grains for the removal of foreign contaminants, discolored products using color sorting techniques.

Fig.1. Dark colored rice grain

Fig.2. Normal rice grain

The objective of this algorithm is to detect foreign bodies and defect objects, this paper aims at providing a sensitive scientific method for accurate inspection of rice grains with defect colors based on machine vision. For example in the below images we can notice the dark colored rice grains (Fig.1), our aim is to detect these kind of dark colored rice grains from normal grains (Fig.2). Machine Vision system (e.g. Color sorters) generally use camerabased systems to view processed rice grains. The sorting processes uses CCD camera technology, combined with fast, precise ejectors to reject as many defective products as possible, whilst minimizing the amount of good products ejected by pneumatic air jets from the produce stream.

II. RGB Images

An RGB image, sometimes referred to as a truecolor image, is stored in MATLAB as an m-by-nby-3 (Fig.3) data array that defines red, green, and blue color components for each individual pixel. RGB images do not use a palette. The color of each pixel is determined by the combination of the red, green, and blue intensities stored in each color plane at the pixel's location. Graphics file formats store RGB images as 24-bit images, where the red, green, and blue components are 8 bits each. This yields a potential of 16 million colors. The precision with which a real-life image can be replicated has led to the commonly used term true-color image.

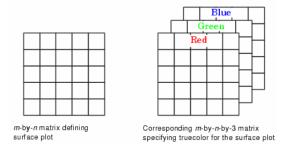


Fig.3. m-by-n-by-3 matrix

True color Surfaces Computer systems with 24-bit displays are capable of displaying over 16 million (224) colors, as opposed to the 256 colors available on 8-bit displays. You can take advantage of this capability by defining color data directly as RGB values and eliminating the step of mapping numerical values to locations in a color map. Specify true color using an m-by-n-by-3 array, where the size of the image is m-by-n.

III. The RGB Color Model

In the RGB model, each color appears in its primary spectral components of red, green, and blue. This model is based on a Cartesian coordinate system. The color subspace of interest is the cube shown in Fig.4, in which RGB values are at three corners; cyan, magenta, and yellow are at three other corners; black is at the origin; and white is at the corner farthest from the origin.

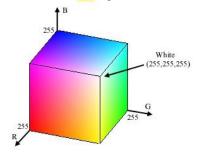


Fig.4. RGB color cube

The different colors in this model are points on or inside the cube, and are defined by vectors extending from the origin. Form the above Fig.4 we can clearly understand that the light colors lie farthest from the origin RGB (0, 0, 0). The darkest color regions were located near to the origin i.e. below (R = 200, G = 200, B = 200).

IV. Algorithm pseudo code

The two 'for' loops will handle the image size (height and width). Red_Range, Green_Range, Blue_Range are the color range variable, using this variable user can set the color range to count the defect pixels. And the three coordinate's pixel values were checked; If the value lie in between the specified color range means the Defect_Pixel variable will be increased to one(1). Finally the Defect_Pixel variable will contain the total amount of defect pixels. Then this Defect_Pixel variable value will be finally used to sort-out the rice grains.

IV. Result & Discussion

i. Input: Red_Range =200; Green_Range =200; Blue_Range =200; (Color range values set to count dark colored pixels), Simulation performed under Matlab-7.0.

Fig.5. Input - Dark colored rice grain

ii. Output

dpix =		
1268	33	
>>		

Fig.6. Amount of dark color present in grain

In the above Fig.6 we can clearly see the defect pixels (dpix = 12683) of the input image. So the variable (Defect_Pixel) value can be used as threshold limit to sort-out the rice.

V. Conclusion

Collation of all results and observations made during this project lead to the following conclusions, For any kind of rice grain the developed algorithms can be used. By using the color sorting algorithm the machine vision system can sort-out a bad rice grain from the system. The average of 0.2 seconds in a 128 MB RAM with ~1GHz Pentium III processor configuration. This time will be reduced in a higher configuration system, because nowadays processors speed were reached above 3 GHz. **References**

- J. A. Roese, "Interframe cosine transform image coding", IEEE Trans. Commun., vol. COM-25, pp. 1329-1338, Nov. 1977.
- [2] Digital Image Processing and Analysis by Bhabatosh Chanda and Dwijesh Dutta Majumder, Third Printing, February, 2002.
- [3] Digital Image Processing, by Rafael C.Gonzalez and Richard E.Woods, Second Edition, First Indian Reprint, 2002.
- [4] http://www.zju.edu.cn/jzus, Identification of rice seed varieties using neural network.
- [5] School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China), Journal of Zhejiang University SCIENCE, ISSN 1009-3095.
- [6] Fundamentals of Computer Algorithms, by Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran. © 1998 W.H. Freeman and Company.
- [7] http://www.zju.edu.cn/jzus, Machine vision inspection of rice seed based on Hough transform, Journal of Zhejiang University SCIENCE, ISSN 1009-3095.

- [8] www.mathwork.com, MATLAB 7.0 Image processing.
- [9] Nissayan J Artnaseaw A. (2011). Increasing an Efficiency of Jasmine Rice Mill. KhonKaen: KhonKaen University.
- [10] Amit Yerpude Rubi Kambo "Classification of Basmati Rice Grain Variety using Image Processing and Principal Component Analysis " IJCTT (International Journal of Computer Trends and Technology) vol. 11 no. 2 pp. 80-85 May 2014.
- [11] Rad S. J. M.; Tab F. A.; Mollazade K. "Classification of Rice Varieties Using Optimal Color and Texture Features and BP Neural Networks " Machine Vision and Image Processing (MVIP) 2011 7th Iranian vol. no. pp. 1 5 16-17 Nov. 2011.
- [12] Neelamegam P.; Abirami S.; Vishnu Priya K.; Rubalya Valantina S. "Analysis of rice granules using image processing and neural network " Information & Communication Technologies (ICT) 2013 IEEE Conference on vol. no. pp. 879 884 11-12 April 2013.
- [13] Harpreet Kaur Baljit Singh "Classification and grading rice using Multi-Class SVM" in International Journal of Scientific and Research Publications (IJSRP) ISSN: 2250-3153 Volume 3 issue 4 pp. 1-5 April 2013.
- [14] Shah V.; Jain K.; Maheshwari C. V. "Nondestructive Quality Analysis of Kamod Oryza Sativa SSP Indica (Indian Rice) Using Machine Learning Technique " Communication Systems and Network Technologies (CSNT) 2013 International Conference on vol. no. pp. 95 99 6-8 April 2013 doi: 10. 1109/CSNT. 2013. 29.
- [15] Verma B. "Image processing techniques for grading & classification of rice " Computer and Communication Technology (ICCCT) 2010 International Conference on vol. no. pp. 220 223 17-19 Sept. 2010.
- [16] Xiai Chen Shuang Ke Wenquan Chen "Detection of Rice Exterior Quality based on Machine Vision" JDCTA: Vol. 6 No. 16 pp. 28-35 2012.
- [17] Nissayan J Artnaseaw A. (2012). "Husk Separation by Air Blower System" Ladkrabang Engineering Journal Vol. 29 No. 1 Mar 2012 pp. 37-42.
- [18] Srikuka J. And Piamsa-nga P. (2014). " Features for Classifying Rice Grains by Image Analysis" International Computer Science and

Engineering Conference Khon Kaen Thailand July 30-August 1 2014.

- [19] He Jing Guan Yu-jun Zhang Yin-pu Bo Tao. "Research on Lights and Pattern Classification of Color Sorter for Rice" Journal of Agricultural Mechanization Research 6 2007 pp. 90-93. 930
- [20] Yang Kaizhi Cheng Yinglei. "A Method of SAR Image Texture Feature Extraction Based on Co-occurrence Matrix". Electronic Science and Technology 2011 21(10): 66-68.
- [21] CHEN Li-jiang LIU Tie-gen ZHU Jun-chao LIU De-mi LU Ping WANG Lei. "Saturationbased Detecting Method to Chromatic Rice Kernels". Journal of Optoelectronics. Laser 2007 18(1).
- [22] Li Rui Peng Xin-de Min Jun Xiao Fang-hua. "Analysis on the Txterior Quality of Rice by Digital Image Processing". Computer Systems & Applications 2011 20(4): 194-198.
- [23] Dalen G.V 'Determination of the size distribution and percentage of broken kernels of rice using flatbed scanning and image analysis'; Food Research International (37) 51-58 2004 Elsevier Science Ltd
- [24] Lloyd B. J. Cnossen A. G. &Siebenmorgen T. J. 'Evaluation of two methods for separating head rice from broken for head rice yield determination' Applied Engineering in Agriculture 17(5) 643-648 2001.
- [25] Yadav B. K. & Jindal V. K. 'Monitoring milling quality of rice by image analysis'. Computers and Electronics in Agriculture 33(1) 19-33.2001 (Pubitemid 34029612)
- [26] Yadav B.K Jindal V.K. "Modeling changes in milled Rice kernel dimensions during soaking by image analysis" Journal of Food Engineering Vol. 80 pp. 359-369 2007. Elsevier Science Ltd.
- [27] Lan Y. Fang Q. Kocher M. F. & Hanna M. A. 'Detection of fissures in rice grains using imaging enhancement'. International Journal of Food Properties 5(1) 205-215. 2002 (Pubitemid 34180450)
- [28] Wan Y.N Lin C.M Chiou J.F 'Rice Quality classification using an automatic grain quality inspection system' Transactions of the ASAE Vol. 45(2): 379-387 2002 American Society of Agricultural Engineers ISSN 0001-2351
- [29] S. O. Belkasim M. Ahmadi M. Shridhar "Efficient algorithm for fast computation of zenike moments", Proc. of IEEE 39th Midwest

Symposium on Circuit and Systems, vol. 3 pp. 1401-1404 1997.

- [30] C. W. Chong P. Raveendran R. Mukundan "A comparative analysis of algorithm for fast computation of zernike moments", Pattern Recognition, vol. 36 no. 3 pp. 731-742 Mar. 2003.
- [31]S. Ghosal R. Mehrotra "Edge detection using orthogonal moment-based operators", Proc. of 11th Image Speech and Signal Analysis (IAPR) Int. Conf. on Pattern Recognition, vol. III pp. 413-416 1992.
- [32] S. Ghosal R. Mehrotra "Segmentation of range images: An orthogonal moment-based integrated approach", IEEE Trans. on Robotics and Automation, vol. 9 no. 4 pp. 385-399 Aug. 1993.
- [33] J. Huang W. Liu X. Sun "A Pavement Crack Detection Method Combining 2D with 3D Information Based on Dempster-Shafer Theory", Computer-Aided Civil and Infrastructure Engineering, 2013.
- [34] Q. Zou Y. Cao Q. Li Q. Mao S. Wang "CrackTree: Automatic crack detection from pavement images", Pattern Recognition Letters, vol. 33 no. 3 pp. 227-238 2012.
- [35] R. Medina F. Gayubo L.M. González-Rodrigo D. Olmedo J. Gómez-García-Bermejo E. Zalama J.R. Perán "Automated visual classification of frequent defects in flat steel coils", The International Journal of Advanced Manufacturing Technology, vol. 57 pp. 1087-97 2011.
- [36] Q. Li Q. Zou X. Liu "Pavement Crack Classification via Spatial Distribution Features" EURASIP Journal on Advances in Signal Processing, 2011.
- [37] H. Oliveira P.L. Correia "Automatic Road Crack Detection and Characterization", IEEE Transactions on Intelligent Transportation Systems, vol. 14 no. 1 pp. 155-168 2013.
- [38] T.S. Nguyen S. Bégot F. Duculty M. Avila "Free-form anisotropy: A new method for crack detection on pavement surface images", 18th IEEE International Conference on Image Processing ICIP 2011, pp. 1069-1072 2011.
- [39] C. Lettsome Y. Tsai V. Kaul "Enhanced Adaptive Filter Bank-Based Automated Pavement Crack Detection", Journal of Electronic Imaging, vol. 21 no. 4 2012.
- [40] Y. Adu-Gyamfi N. Attoh-Okine G. Garateguy R. Carillo G.R. Arce "A Multi-Resolution

Information Mining for Pavement Crack Image Analysis", ASCE Journal of Computing in Civil Engineering, vol. 26 no. 6 pp. 741-749 2012.

- [41] R. Medina J. Gómez-García-Bermejo E. Zalama "Automated visual inspection of road surface cracks", Proceedings of the 27th International Symposium on Automation and Robotics in Construction ISARC'10, pp. 155-64 2010.
- [42] Y. He H. Qiu J. Wang W. Zhang and J. Xie "Studying of road crack image detection method based on the mathematical morphology " in Image and Signal Processing (CISP) 2011 4th International Congress on 2011 pp. 967-969.
- [43] X. Guoai M. Jianli L. Fanfan and N. Xinxin "Automatic Recognition of Pavement Surface Crack Based on BP Neural Network " in Computer and Electrical Engineering 2008. ICCEE 2008. International Conference on 2008 pp. 19-22.
- [44] PH.P. Darcis C.N. McCowan J.D. McColeskey R. Fields "Crack tip opening angle measurement through a girth weld in an X100 steel pipeline section", Fatigue and Fracture of Eng. Materials and Structures, vol. 31 no. 12 pp. 1065-1078 2008.